inovace, technologie, projekty Oteplení nevýbušných motorů Vyhodnocení maximální teploty rotoru plně uzavřených asynchronních motorů napájených z měničů frekvence prof. Václav Černý 1. Úvod Pro elektrické stroje a zařízení, které pracují v prostředí s nebezpečím výbuchu, platí zvláštní předpisy pro výrobce, uživatele i revizní orgány. Základní konstrukční norma pro nevýbušná elektrická zařízení ČSN EN 50014 je v souladu s mezinárodními doporučeními i s americkými předpisy NEC (National Electrical Code). Referovaná práce seznamuje s výsledky měření oteplení rotoru a statoru u hermeticky uzavřených nevýbušných motorů určených pro chemický a petrolejářský průmysl a napájených z měničů frekvence. (Tyto motory se v USA označují zkratkou TEFC – Totaly Enclosed Fan Cooled motors). Sleduje se oteplení rotoru a statoru při různých otáčkách motoru, při různých hodnotách magnetického toku a při různém zátěžném momentu. Tab. 1. Základní rozsah měřených parametrů | | Parametr | Rozsah | zdroj | sinusový a PWM | zátěžový moment | 75 až 100 % | pracovní frekvence | 3 až 60 Hz | nosná frekvence PWM | 2 až 8 kHz | | | 2. Ověřované parametry a výsledky měření Základní rozsah měřených parametrů je zřejmý z tab. 1. Pro test byly zvoleny motor a měnič běžně používané pro tyto aplikace. Použitý motor: asynchronní s dvojitou klecí v rotoru a vnitřním ventilátorem malého průměru, výkon 14,7 kW (20 hp). Použitý měnič: s pulsně šířkovou modulací (PWM), osazený výkonovými tranzistory IGBT, výkon 22 kW (30 hp), nosnou frekvenci bylo možné volit v krocích 2 nebo 4 nebo 8 kHz. Většina testů byla provedena v oblasti konstantního momentu (U1/f1 = k). Teplota rotoru za chodu stroje byla měřena termoelektrickými články, zabudovanými na povrchu rotoru s vývody na sběrací kroužky na obou koncích hřídele. Teplota okolí byla 25 °C. Na obr. 1 jsou vyneseny naměřené hodnoty oteplení v závislosti na napájecí frekvenci při jmenovitém magnetickém toku a jmenovitém zátěžném momentu. Ve všech případech je oteplení rotoru větší než oteplení statoru. Při sinusovém průběhu napájecího napětí motoru je oteplení vždy nižší než při PWM s nosnou frekvencí 2 kHz. Obr. 1. Naměřené hodnoty oteplení v závislosti na napájecí frekvenci při jmenovitém magnetickém toku a zátěžném momentu 100 %; čárkované průběhy odpovídají napájení ze sinusového zdroje, plné průběhy napájení z měniče PWM s nosnou frekvencí 2 kHz; 1 – oteplení rotoru (PWM, 2 kHz), 2 – oteplení rotoru (sin), 3 – oteplení statoru (PWM, 2 kHz), 4 – oteplení statoru (sin) Obr. 2. Naměřené hodnoty oteplení v závislosti na napájecí frekvenci při jmenovitém magnetickém toku a zátěžném momentu 100 % a 75 % (napájení z měniče PWM s nosnou frekvencí 2 kHz). 1 – oteplení rotoru při zatížení 100 %, 2 – oteplení statoru při zatížení 100 %, 3 – oteplení rotoru při zatížení 75 %, 4 – oteplení statoru při zatížení 75 % Obr. 3. Poměrné oteplení rotoru a statoru v závislosti na frekvenci; plnou čarou je vynesen průběh při zatížení 100 %, čárkovaně průběh při zatížení 75 % Obr. 5. Oteplení rotoru a statoru v závislosti na poměrném zátěžném momentu M/Mn (%); 1 – oteplení rotoru (°C), 2 – oteplení statoru (°C), 3 – poměr oteplení rotoru a statoru (%) Obr. 4. Oteplení rotoru a statoru v závislosti na velikosti magnetického toku; 1 – oteplení rotoru (°C), 2 – oteplení statorového vinutí (°C), 3 – poměrné oteplení rotoru a statoru (%) Obr. 5. Oteplení rotoru a statoru v závislosti na poměrném zátěžném momentu M/Mn (%); 1 – oteplení rotoru (°C), 2 – oteplení statoru (°C), 3 – poměr oteplení rotoru a statoru (%) Na obr. 2 jsou naměřené hodnoty oteplení v závislosti na napájecí frekvenci při jmenovitém magnetickém toku a zátěžném momentu 100 % a 75 % (napájení z měniče PWM s nosnou frekvencí 2 kHz). Z průběhů je zřejmé, že při sníženém zatížení je oteplení rotoru i statoru podstatně menší. Růst oteplení při malých frekvencích je při sníženém zatížení méně strmý. Obr. 3 je ukazuje zajímavé zjištění, že při menších frekvencích je poměr oteplení rotoru a statoru při malých frekvencích málo rozdílný při zatížení 100 % a 75 %. Při sníženém napájecím napětí se zmenšuje magnetický tok motoru, roste skluz a zvětšuje se proud statoru i rotoru a tím i oteplení rotoru i statoru, jak je zřejmé z obr. 4. Je zajímavé, že poměr oteplení rotoru a oteplení statoru je přibližně stálý (150 %). S rostoucím zátěžným momentem roste i oteplení, přičemž opět oteplení rotoru je větší nežli oteplení statoru. Poměr oteplení rotoru a statoru je opět přibližně stálý (150 %), jak je zřejmé z obr. 5. 3. Závěr Měření oteplení typického plně uzavřeného asynchronního motoru napájeného z měniče frekvence prokázalo, že ve všech provozních případech bylo oteplení rotoru vždy podstatně větší než oteplení statoru. Oteplení statoru i rotoru prudce rostlo s klesající frekvencí napájecího napětí motoru, obdobně i při snižování napájecího napětí a růstu zátěžného momentu. Při proměnlivých provozních podmínkách by tedy bylo vždy vhodnější použít motor i měnič o stupeň výkonnější a ochranu motoru vždy doplnit ochranou závislou na povrchové teplotě motoru, kontrolovanou přídavnými snímači povrchové teploty. Literatura: DOUGHTY, R. L. – DAUGHERTY, R. H. – MELFI, M. J. – TSAO, J. P.: Evoluation of Maximum Rotor Temperatures in TEFC Inverter – Fed Motors. IEEE Industry Applications Magazine, July/Aug. 2002. |