Polymer discovery gives 3D-printed sand super strength
15. 11. 2021 | ORNL | www.ornl.gov
Researchers at the Department of Energy’s Oak Ridge National Laboratory designed a novel polymer to bind and strengthen silica sand for binder jet additive manufacturing, a 3D-printing method used by industries for prototyping and part production.
The printable polymer enables sand structures with intricate geometries and exceptional strength – and is also water soluble. The study, published in Nature Communications, demonstrates a 3D-printed sand bridge that at 6.5 centimeters can hold 300 times its own weight, a feat analogous to 12 Empire State Buildings sitting on the Brooklyn Bridge.
The binder jet printing process is cheaper and faster than other 3D-printing methods used by industry and makes it possible to create 3D structures from a variety of powdered materials, offering advantages in cost and scalability. The concept stems from inkjet printing, but instead of using ink, the printer head jets out a liquid polymer to bind a powdered material, such as sand, building up a 3D design layer by layer. The binding polymer is what gives the printed sand its strength.
Read more at ORNL
Image Credit: Dustin Gilmer / University of Tennessee, Knoxville
-jk-