The path to achieving net-zero liquid fuel
8. 10. 2021 | Monash University | www.monash.edu
Researchers from Monash University and Hokkaido University have developed a method that converts carbon dioxide into a diesel-range fuel and has the potential to produce a net-zero liquid fuel alternative to power cars more sustainably.
When carbon dioxide (CO2) is added to the manufacturing process of fuel production, it has the capability to produce fuels that reduce or reverse the net CO2 emissions. When the hydrogen required for this process is supplied via solar powered water electrolysis, the entire process becomes completely renewable. The end result is a net-zero carbon emitting fuel product.
In the method developed by Monash, carbon dioxide, hydrogen and methanol are used as a feedstock for producing dimethoxymethane (DMM) in a single reactor. The team developed a novel catalyst based on ruthenium nanoparticles which make this reaction possible. An added advantage is that this reaction takes place at much lower temperatures than conventional methanol and formaldehyde production methods, making it significantly more energy efficient. Monash engineers are also working on a methanol synthesis method from carbon dioxide and hydrogen, closing the carbon loop to renewables only.
Read more at Monash University
Image Credit: Unsplash
-jk-