We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

University of Groningen scientists design superfast molecular motor

21. 6. 2021 | University of Groningen | www.rug.nl

Light-driven molecular motors have been around for over twenty years. These motors typically take microseconds to nanoseconds for one revolution. Thomas Jansen, associate professor of physics at the University of Groningen, and Master’s student Atreya Majumdar have now designed an even faster molecular motor. The new design is driven by light only and can make a full turn in picoseconds, using the power of a single photon.

The new motor molecule design started with a project in which Jansen wanted to understand the energy landscape of excited chromophores. ‘These chromophores can attract or repel each other. I wondered if we could use this to make them do something’, explains Jansen. He gave the project to Atreya Majumdar, then a first-year student in the Top Master’s degree programme in Nanoscience in Groningen. Majumdar simulated the interaction between two chromophores that were connected to form a single molecule.

Molecular motor

The original light-driven molecular motor was developed by Jansen’s colleague Ben Feringa, Professor of Organic Chemistry at the University of Groningen and recipient of the 2016 Nobel Prize for Chemistry. This motor makes one revolution in four steps. Two steps are driven by light and two are driven by heat. ‘The heat steps are rate-limiting,’ explains Jansen. ‘The molecule has to wait for a fluctuation in heat energy to drive it to the next step.’ By contrast, in the new design, a rotation is fully downhill from an excited state.

Read more at University of Groningen

Image Credit: Bill Oxford/Unsplash

-jk-