We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

Superconducting Microprocessors? Turns Out They're Ultra-Efficient

15. 1. 2021 | IEEE Spectrum | spectrum.ieee.org

Computers use a staggering amount of energy today. According to one recent estimate, data centers alone consume two percent of the world’s electricity, a figure that’s expected to climb to eight percent by the end of the decade. To buck that trend, though, perhaps the microprocessor, at the center of the computer universe, could be streamlined in entirely new ways.

One group of researchers in Japan have taken this idea to the limit, creating a superconducting microprocessor—one with zero electrical resistance. Superconductor microprocessors could offer a potential solution for more energy efficient computing power—but for the fact that, at present, these designs require ultra-cold temperatures below 10 kelvin (or -263 degrees Celsius). The research group in Japan sought to create a superconductor microprocessor that’s adiabatic, meaning that, in principle, energy is not gained or lost from the system during the computing process.

Superconducting microprocessors

While adiabatic semiconductor microprocessors exist, the new microprocessor prototype, called MANA (Monolithic Adiabatic iNtegration Architecture), is the world’s first adiabatic superconductor microprocessor. It’s composed of superconducting niobium and relies on hardware components called adiabatic quantum-flux-parametrons (AQFPs). Each AQFP is composed of a few fast-acting Josephson junction switches, which require very little energy to support superconductor electronics. The MANA microprocessor consists of more than 20,000 Josephson junctions (or more than 10,000 AQFPs) in total.

Read more at IEEE Spectrum

Image Credit: Christopher Ayala

-jk-