3-D printed batteries handle the squeeze
17. 7. 2020 | Phys.org | www.phys.org
While flexible and stretchable electronics technologies have progressed in leaps and bounds over the past 10 years, batteries to power them have some catching up to do. Researchers in Singapore and China have now demonstrated a "quasi-solid-state" battery—made from materials somewhere between a liquid and a solid—that can be compressed by as much as 60% while maintaining high energy density and good stability over 10,000 charge–recharge cycles.
The battery fabrication exploits 3-D printing, which, while attracting interest for producing complex battery structures, has posed challenges for batteries that can stretch, squash and bend while powering devices. "3-D printing technology is a very rapidly developing area," says Hui Ying Yang, a materials science researcher at Singapore University of Technology and Design who led the research reported in ACS Nano. She explains that this prompted her and her colleagues to apply the technology to their battery research for rapid prototyping, allowing them "to produce battery electrodes with any arbitrary shape, layers and patterns."
Yang and her colleagues printed their nanocarbon aerogel and then deposited electrochemically active iron- and nickel-based nanomaterials to the printed structure. To achieve the desired viscosity of the printing ink they blended GO flakes with carbon nanotubes (CNTs). They then immersed the printed lattice structures in a mixture of ammonia and sulfates, including nickel sulfate, which led to the formation of Ni(OH)2 nanoflakes on the structure. When they treated the nanocarbon lattice with iron nitrate and iron chloride, porous αFe2O3 nanorod arrays grew on the surface of the lattice instead.
Celý článek na Phys.org
Image Credit: ACS Nano
-jk-