We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

High-throughput discovery of 2D magnets

10. 4. 2020 | Indian Institute of Science | www.iisc.ac.in

2-D materials are atomically thin, single-layered films arranged in a crystal structure, which have potential applications in next-generation electronics and optoelectronic devices. Ferromagnetism (FM) in such materials ‒ the mechanism by which they act as magnets ‒ was considered implausible until a few years ago. In 2017, scientists discovered low-temperature FM in 2-D materials, which has led to significant advances in the fields of nanotechnology and electronics.

At low temperatures, ferromagnetic materials are capable of retaining their magnetic properties well. However, the magnetic order in such materials gets disturbed as the temperature increases. The temperature at which materials lose their FM properties is known as the Curie point. Curie point is therefore a critical property of ferromagnetic materials for practical applications. However, determining the Curie temperature involves a set of very complex calculations.

2D magnetic materials

A research team from the Indian Institute of Science (IISc) has now developed an open source computer code to estimate Curie temperatures from the crystal structures of materials. The study, published in npg Computational Materials, combines informatics using open source databases and machine learning to discover as well as predict the Curie temperatures of 2-D ferromagnetic (2DFM) materials.

Read more at Indian Institute of Science

Image Credit: Indian Institute of Science

-jk-