New approach could boost energy capacity of lithium batteries
29. 3. 2019 | MIT | www.mit.edu
Researchers around the globe have been on a quest for batteries that pack a punch but are smaller and lighter than today’s versions, potentially enabling electric cars to travel further or portable electronics to run for longer without recharging. Now, researchers at MIT and in China say they’ve made a major advance in this area, with a new version of a key component for lithium batteries, the cathode.
The team describes their concept as a “hybrid” cathode, because it combines aspects of two different approaches that have been used before, one to increase the energy output per pound (gravimetric energy density), the other for the energy per liter (volumetric energy density). The synergistic combination, they say, produces a version that provides the benefits of both, and more.
Today’s lithium-ion batteries tend to use cathodes made of a transition metal oxide, but batteries with cathodes made of sulfur are considered a promising alternative to reduce weight. The cathodes of such batteries are usually made in one of two ways, known as intercalation types or conversion types. In their new hybrid system, the researchers have managed to combine the two approaches into a new cathode that incorporates both a type of molybdenum sulfide called Chevrel-phase, and pure sulfur, which together appear to provide the best aspects of both.
Read more at MIT
Image Credit: MIT
-jk-