Six-legged robots get closer to nature
12. 3. 2018 | Science Daily | www.sciencedaily.com
A study led by researchers at Tokyo Institute of Technology has uncovered new ways of driving multi-legged robots by means of a two-level controller. The proposed controller uses a network of so-called non-linear oscillators that enables the generation of diverse gaits and postures, which are specified by only a few high-level parameters. The study inspires new research into how multi-legged robots can be controlled, including in the future using brain-computer interfaces.
In the natural world, many species can walk over slopes and irregular surfaces, reaching places inaccessible even to the most advanced rover robots. It remains a mystery how complex movements are handled so seamlessly by even the tiniest creatures.
Now, researchers in Japan and Italy propose a new approach to walking pattern generation, based on a hierarchical network of electronic oscillators arranged over two levels, which they have demonstrated using an ant-like hexapod robot. The achievement opens new avenues for the control of legged robots.
Read more at Science Daily
Image Credit: IEEE ACCESS
-jk-