Complex Biological Computer Commands Living Cells
31. 7. 2017 | IEEE Spectrum | spectrum.ieee.org
Researchers have developed a biological computer that functions inside living bacterial cells and tells them what to do, according to a report published today in Nature. Composed of ribonucleic acid, or RNA, the new “ribocomputer” can survive in the bacterium E. coli and respond to a dozen inputs, making it the most complex biological computer to date.
“We’ve developed a way to control how cells behave,” says Alexander Green, an engineer at The Biodesign Institute at Arizona State University, who developed the technology with colleagues at Harvard’s Wyss Institute for Biologically Inspired Engineering. The cells go about their normal business, replicating and sensing what’s going on in their environments, “but they’ve also got this layer of computational machinery that we’ve instructed them to synthesize,” he says.
The biological circuit works just like a digital one: It receives an input and makes a logic-based decision, using AND, OR, and NOT operations. But instead of the inputs and outputs being voltage signals, they are the presence or absence of specific chemicals or proteins.
Read more at IEEE Spectrum
Image Credit: Alexander Green
-jk-