We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

Thermoelectric silicon material reaches record-low thermal conductivity

5. 10. 2016 | Phys.org | www.phys.org

Researchers have theoretically demonstrated the lowest rate of heat transfer, or thermal conductivity, in any silicon-based material developed so far.

The new material, which is a polycrystalline silicon nanowire, breaks two limits: the Casimir limit and the amorphous limit. The Casimir limit is a theory that describes the thermal conductivity of nanostructures, and breaking it means that the thermal conductivity of the new material is lower than the value predicted by Casimir limit theory.

New thermoelectric material

The amorphous limit is regarded as the lowest thermal conductivity of a material, since amorphous structures strongly scatter heat carriers. However, due to its unique nanoscale design, the polycrystalline silicon nanowire has a thermal conductivity that is three times lower than that of amorphous silicon materials.

The researchers expect that the new material could be especially useful for thermoelectric applications. By converting heat energy into electricity, thermoelectric materials provide a way to capture some of the waste heat emitted by vehicle tailpipes, power plants, and manufacturing facilities, and then convert the heat into useful energy.

Read more at Phys.org

Image Credit: Adobe Stock

-jk-