We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

Record-speed data transmission could make big data more accessible

23. 3. 2016 | University of Illinois | news.illinois.edu

University of Illinois engineers developed fiber-optic technology that can transmit data at a blazing-fast 57 gigabits per second, without errors.

The research team was led by electrical and computer engineering professor Milton Feng. Feng’s group has been pushing VCSEL technology to higher speeds in recent years, and in 2014 was the first group in the U.S. to achieve error-free data transmission at 40 gigabits per second (denoted as Gbps). Now, in a series of conference papers, they report 57 Gbps error-free data transmission at room temperature, as well as 50 Gbps speeds at higher temperatures up to 85 degrees Celsius (185 degrees Fahrenheit).

Record-breakind data transfer

Achieving high speeds at high temperatures is very difficult, Feng said, due to the nature of the materials used, which prefer lower temperatures. However, computing components grow warm over extended operation, as anyone who has worked on an increasingly heated laptop can attest.

“This type of technology is going to be used not only for data centers, but also for airborne, lightweight communications, like in airplanes, because the fiber-optic wires are much lighter than copper wire,” Feng said.

Read more at University of Illinois

Image Credit: University of Illinois

-jk-